首页> 外文OA文献 >Semiblind subgraph reconstruction in Gaussian graphical models
【2h】

Semiblind subgraph reconstruction in Gaussian graphical models

机译:高斯图形模型中的半盲子图重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consider a social network where only a few nodes (agents) have meaningfulinteractions in the sense that the conditional dependency graph over nodeattribute variables (behaviors) is sparse. A company that can only observe theinteractions between its own customers will generally not be able to accuratelyestimate its customers' dependency subgraph: it is blinded to any externalinteractions of its customers and this blindness creates false edges in itssubgraph. In this paper we address the semiblind scenario where the company hasaccess to a noisy summary of the complementary subgraph connecting externalagents, e.g., provided by a consolidator. The proposed framework applies toother applications as well, including field estimation from a network of awakeand sleeping sensors and privacy-constrained information sharing over socialsubnetworks. We propose a penalized likelihood approach in the context of agraph signal obeying a Gaussian graphical models (GGM). We use a convex-concaveiterative optimization algorithm to maximize the penalized likelihood.
机译:考虑一个社交网络,其中只有少数节点(代理)具有有意义的交互,这是因为节点属性变量(行为)的条件依赖图稀疏。只能观察其自身客户之间的相互作用的公司通常将无法准确估计其客户的依存关系子图:它不了解其客户的任何外部相互作用,而这种盲目性会在其子图中产生虚假的边缘。在本文中,我们解决了半盲场景,即公司可以访问连接外部代理的互补子图的嘈杂摘要,例如由合并者提供的摘要。所提出的框架也适用于其他应用,包括来自清醒和睡眠传感器网络的现场估计以及在社交子网上共享隐私的信息。我们在服从高斯图形模型(GGM)的图信号的背景下提出了一种惩罚似然法。我们使用凸-凹优化算法来最大化惩罚的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号